3.6

Parallels and Transversals

In the figure below, \overrightarrow{AB} and \overrightarrow{CD} represent two lines in the same plane which have no point in common.

 \overrightarrow{AB} is parallel to \overrightarrow{CD} . This statement can also be written $\overrightarrow{AB} \parallel \overrightarrow{CD}$.

Definition of Parallel Lines

Two lines are parallel if and only if they lie in the same plane and they do not intersect

In a plane, a transversal is a line that intersects two other lines in two different points.

The transversal t intersects line ℓ_1 and ℓ_2

If line ℓ_1 and ℓ_2 are parallel $(\ell_1 || \ell_2)$, then many pairs of angles will have certain properties.

Angle Properties of Parallel Lines and a Transversal

Vertically Opposite Angles Corresponding Angles Alternate Interior

Alternate Interior Angles Co-Interior Angles

$$\angle 1 = \angle 4$$
 $\angle 5 = \angle 8$ $\angle 1 = \angle 5$ $\angle 3 = \angle 7$ $\angle 2 = \angle 3$ $\angle 6 = \angle 7$ $\angle 2 = \angle 6$ $\angle 4 = \angle 8$

$$\angle 3 = \angle 6$$
 $\angle 4 = \angle 5$

$$\angle 3 + \angle 5 = 180^{\circ}$$

 $\angle 4 + \angle 6 = 180^{\circ}$

Complementary - Two angles that add to 90°

$$\angle 1 + \angle 2 = 90^{\circ}$$

$$\angle 1 + \angle 2 = 180^{\circ}$$

Interior angles of a triangle add to 180°

$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

3.6 Exercise Set

1. Given parallel lines ℓ_1 and ℓ_2 intersected with transversal t

Identify:

- a) 4 pairs of vertically opposite angles
- b) 2 pairs of alternate interior angles
- c) 4 pairs of corresponding angles
- d) 2 pairs of co-interior angles
- 2. Find the missing angles.

e)
$$\frac{133^{\circ}}{(2x+5)^{\circ}}$$

 $g) \rightarrow (2x-11)^{\circ}$

i) 2 80° 1

33°/2 3

$$2 = \frac{1}{(14x+3)^{\circ}}$$

$$\frac{1}{(14x+3)^{\circ}}$$

$$\frac{1}{(16x-5)^{\circ}}$$

m)
$$\frac{1}{(2x-3)^{\circ}}$$

$$(6x+7)^{\circ}$$

3. Find the missing angles and state the reason for each answer.

a)

∫5y°	x°	->
		0
4y°		

x = _____

y = _____

b)

c)

1 = _____

d)

2 -

3 = _____

e

1 = _____

2 = _____

f)

1 = _____

2 = _____

3 =

g)

1 =

2 = _____