Estimating Non-Perfect Square Roots

Name	Divis	Data	
Name:	D1v.:	Date:	

Not all squares have a side length that is a whole number. We can estimate the length of the sides of these squares through our understanding of fractions and our perfect squares!

3cm²

← 3 is between the perfect squares of 1 and 4. Since the square roots of 1 and 4 are 1 and 2, respectively, then the square root of 3 is between 1 and 2.

> Option 1: Use a number line to find which two perfect squares the non-perfect square root sits between. Then determine what fraction of the way it is from the first to the next perfect square.

Therefore $\sqrt{7}$ is going to be 2 ($\sqrt{4}$) because it is beyond that point, and a fraction of the way to 3 ($\sqrt{9}$).

$$\sqrt{7} = 2\frac{3}{5} \approx 2.6$$

> Option 2: Find which two perfect squares the non-perfect square root sits between. Then find what fraction of the way from the first perfect square to the second perfect square the non-perfect square is by the following means:

(Non - Perfect Square) - (First Perfect Square) (Second Perfect Square) - (First Perfect Square)

E.G.
$$\sqrt{7} = \frac{7-4}{9-4} = \frac{3}{5}$$
 So, $\sqrt{7} = 2\frac{3}{5} \approx 2.6$

Estimating Non-Perfect Square Roots

Name:	Div.:	Date:
Use a number line, or a diroots sit between.	iagram to determine which two conse	ecutive whole numbers the following square
1) √3	2) √8	3) $\sqrt{10}$
4) √ 20	<u>5</u>) √30	6) $\sqrt{40}$
7) √ 60	8) √90	9) √112
	* .	
	9	
Without using a calculato decimal). Check your an		to the tenths decimal place (fraction to
10) √ 3	11)√8	12) $\sqrt{10}$
$13)\sqrt{20}$	14)√ 30	15) $\sqrt{40}$
	ή.	
$16)\sqrt{60}$	17)√90	18) √112