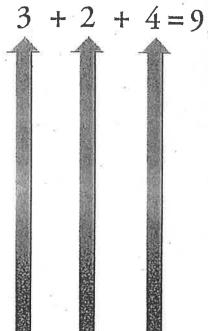
DEGREE OF POLYNOMIAL DIV: ___ DATE: ___

NAME:

The degree of a monomial is the sum of the exponents of its variables.

Monomial		Degree	
$4x^{3}$	# pi		3
$5a^2b^3c$	100 mg	2	+ 3 + 1 = 6


The degree of a polynomial in one variable is the highest power of the variable in any one term.

Polynomials	Degree	
$6x^2 + 3x$	2	
$x^5 + 7x^2 - 3$	5	

The degree of a polynomial in two variables or more is the largest sum of the exponents in any one term.

Polynomials	De	Degree	
$x^2y^3 + xy^4 + xy^5$		6	
$3x^3y^4 + 7xy^3 - 2xy$		7	

Example 2

Classify each polynomial and state its degree.

b)
$$2x^2 + x$$

c)
$$3xy + 5x^2y^2 - 3$$

Solution

- a) 3 abc is a monomial. The sum of the exponents is 1 + 1 + 1 = 3. It is a third-degree polynomial.
- **b)** $2x^2 + x$ is a binomial. The highest power, 2, is contained in the term $2x^2$. It is a second-degree polynomial.
- c) $3xy + 5x^2y^2 3$ is a trinomial. The largest exponent sum is contained in the term $5x^2y^2$. It is a fourth-degree polynomial.

The terms of a polynomial are usually arranged so that the powers of one variable are in either ascending order or descending order.

Descending Order	Ascending Order
$x^3 + 2x^2 - 5x + 7$	$7 - 5x + 2x^2 + x^3$
$(in x) 5x^2 + 7xy + 3y^2$	$(in x) 3y^2 + 7xy + 5x^2$

Do Q# 1-31 (000)

Practice

Identify as a monomial, binomial, or trinomial.

2.
$$x + 2y$$

3.
$$a - 2b + 3c$$

4.
$$x^2 + y^2$$

6.
$$x - y + 2$$

8.
$$25x^2y^2$$

10.
$$2x^2y^3$$

11.
$$-5x^3y^4$$

12.
$$-6xy^4z$$
.

State the degree of each polynomial.

13.
$$5x^2y^2 + 3xy^3$$

14.
$$3x + 2y - 5z$$

15.
$$x^4 + 2x^3 + 3x^2 + 4$$

16.
$$4x^4y^2 + 2x^3y^5 - 23$$

17.
$$3x - 2y + z^2$$

18:
$$25m^3n + 36m^3n^3$$

19.
$$-5x^4y^2z + 2x^2y^2z^2$$

Arrange the terms in each polynomial in descending powers of x.

20.
$$1 + x^3 + x^2 + x^5$$

21.
$$5 - 3x^3 + 2x$$

22.
$$5y^2 + 2xy - x^2$$

23.
$$25xy^2 - 5x^2y + 3x^3y^3 - 4x^4$$

24.
$$5ax + 7b^2x^4 - 3x^3 + 4abx^2$$

Arrange the terms in each polynomial in ascending powers of x.

25.
$$3x^2 - 2x^3 + 5x^5 + x - 2$$

26.
$$4x^4 + x^2 - 3x^3 + 5 - x$$

27.
$$4xy^2 - 2x^2y^2 - 3x^4 + 2x^3y$$

28.
$$5x^2yz^2 + 2xy^4z + 3x^3y^4z^2 - 3$$

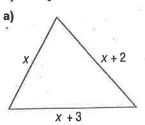
29.
$$z - xy + x^2$$

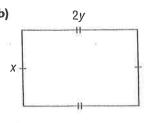
30.
$$x^2 - 2xy - 3x^3 + 16$$

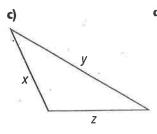
31.
$$2x^3y + 3xy - x^5$$

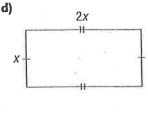
32.
$$3x^3y^2 + x^4y + xy - 1$$

Problems and Applications

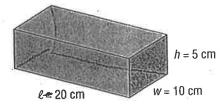

33. Identify each type of polynomial.


a)
$$\frac{4\pi r^3}{3}$$


b)
$$\pi r^2 + 2\pi rh$$


c) 4
$$\pi r$$

34. What type of polynomial is represented by the perimeter of each of these figures?



35. a) Calculate the area of each face of this box.

- b) What is the total area of the box?
- c) Write a polynomial that can be used to calculate the answer you gave in part b).
- **36.** The formula for the volume of a rectangular jewellery box is lwh. Its dimensions are 25 cm \times 18 cm \times 17 cm. It has 2 cm thick walls. What is the volume of the box's interior to the nearest cubic centimetre?

37. Write a problem that can be solved with a polynomial. Have a classmate solve your problem.